If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4-10x=0
a = 1; b = -10; c = -4;
Δ = b2-4ac
Δ = -102-4·1·(-4)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{29}}{2*1}=\frac{10-2\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{29}}{2*1}=\frac{10+2\sqrt{29}}{2} $
| 9+x-1-8=x+5x | | x^2+4-165=0 | | -2/5r+7/10=-73/10 | | M(x)=6 | | (35+25x)=40 | | X+6+4x-6=1 | | 9x+6=3x-24 | | 2.7-3t=-82.5-15t | | X^2=11-4x | | -5(1-4v)=23 | | 12;nn=3 | | 6x-3=8x+17 | | x^2=-18x+18 | | 6(x-1)=6+2(3x-4) | | 9m-19=3m+1m=10/3 | | (10^n+9)/(n+1)=4.5 | | 7(h+3)=63 | | -591-4v)=23 | | 3t+4=12+36 | | 2(x+3)=2x=6(x+5) | | 4698=1/2a36 | | 5(2r+4)=3(2r+9)+4-7 | | 3m^2-7m-136=0 | | 3x=1x+2x | | −6x=1 | | 9b^2-7b+1=0 | | 8z-1513z=-15 | | 3(x+2)-2(2x+2)=6 | | 2x=1(2x) | | 7x-5+17x-1=2(12x-5)+4 | | 11y-6+16y-12=180 | | (x3-3/3)-1=(x-10/4) |